CHAPTER

2

The Object Model

Object-oriented design is built upon a sound engineering foundation, whose
elements we collectively cali the object model. The object model encompasses
the principles of abstraction, encapsulation, modularity, hierarchy, typing,
concurrency, and persistence. By themselves, none of these principles are
new. What is important about the object model is that these elements are
brought together in a synergistic way.

Let there be no doubt that object-oriented design is fundamentally different
than traditional structured design approaches: it requires a different way of
thinking about decomposition, and it produces software architectures that are
largely outside the realm of the structured design culture. These differences
arise from the fact that structured design methods build upon structured pro-
gramming, whereas object-oriented design builds upon object-oriented pro-
gramming. Unfortunately, object-oriented programming means different things
to different people. As Rentsch correctly predicted, “My guess is that object-
oriented programming will be in the 1380s what structured pregramming was
in the 1970s. Everyone will be in favor of it. Every manufacturer wili promote
his products as supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know just what it is”

[1].

from the book "Object Oriented Design With Applications' by Grady Booch
published by Benjamin Cummings Publishing Co., ISBN 0-80533-0091-0 (1991)

Concepts

In this chapter, we will show clearly what object-oriented design is and
what it is not, and how it differs from other design methods through its use of
the seven elements of the object model.

2.1 The Evolution of the Object Model

Trends in Software Engineering

The Generations of Programming Languages. As we look back upon the rela-
tively brief yet colorful history of software engineering, we cannot help but
notice two sweeping trends:

* The shift in focus from programming-in-the-small to programming-in-
the-large

* The evolution of high-order programming languages

Most new industrial-strength software systems are larger and more complex
than their predecessors were even just a few years ago. This growth in com-
plexity has prompted a significant amount of useful applied research in software
engineering, particularly with regard to decomposition, abstraction, and hierar-
chy. The development of more expressive programming languages has com-
plemented these advances. The trend has been a move away from languages
that tell the computer what to do (imperative languages) toward languages that
describe the key abstractions in the problem domain {(declarative languages).

Wegner has classified some of the more popular high-order programming
languages in generations arranged according to the language features they first
introduced:

« First-Generation Languages (1954-1958)

FORTRAN I Mathematical expressions
ALGOL 58 Mathematical expressions
Flowmatic Mathematical expressions
[PLV Mathematical expressions

+ Second-Generation Languages (1959-1961)

FORTRAN I Subroutines, separate compilation
ALGOL 60 Block structure, data types
COBOL Data description, file handling

Lisp List processing, pointers

T AT O Y. 3

i T i T

« Third-Generation Languages (1962-1970)

PL/1 FORTRAN + ALGOL + COBOL
ALGOL 68 Rigorous successor to ALGOL 60
Pascal Simple successor to ALGOL 60
Simula Classes, data abstraction

+ The Generation Gap (1970-1980)
Many different languages were invented, but few endured [2]

In successive generations, the kind of abstraction mechanism each language
supported changed. First-generation languages were used primarily for scientific
and engineering applications, and the vocabulary of this problem domain was
almost entirely mathematics. Languages such as FORTRAN I were thus devel-
oped to allow the programmer to write mathematical formulas, thereby freeing
the programmer from some of the intricacies of assembly or machine language.
This first generation of high-order programming languages therefore repre-
sented a step closer to the problem space, and a step further away from the
underlying machine. Among second-generation languages, the emphasis was
upon algorithmic abstractions. By this time, machines were becoming more and
more powerful, and the economics of the computer industry meant that more
kinds of problems could be automated, especially for business applications.
Now, the focus was largely upon telling the machine what to do: read these
personnel records first, sort them next, and then print this report. Again, this
new generation of high-order programming languages moved us a step closer
to the problem space, and further away from the underlying machine. By the
late 1960s, especially with the advent of transistors and then integrated circuit
technology, the cost of computer hardware had dropped dramatically, yet pro-
cessing capacity had grown almost exponentially. Larger problems could now
be solved, but these demanded the manipulation of more kinds of data. Thus,
languages such as ALGOL 60 and, later, Pascal evolved with support for data
abstraction. Now a programmer could describe the meaning of related kinds of
data (their type) and let the programming language enforce these design deci-
sions. This generation of high-order programming languages again moved our
software a step closer to the problem domain, and further away from the under-
lying machine.

The 1970s provided us with a frenzy of activity in programming language
research, resulting in the creation of literally a couple of thousand different
programming languages and their dialects. To a large extent, the drive to write
larger and larger programs highlighted the inadequacies of earlier languages;
thus, many new language mechanisms were developed to address these limita-
tions. Few of these languages survived (have you seen a recent textbook on the
languages Fred, Chaos, or Tranquil?); however, many of the concepts that they
introduced found their way into successors of earlier languages. Thus, today we
have Ada (a successor to ALGOL 68 and Pascal, with contributions from Simula,
Alphard, and CLU), CLOS (which evolved from Lisp, LOOPS, and

Concepts

Data
Subprograms ™~ \
Figure 2-1

The Topology of First- and Early Second-Generation Programming Languages

Flavors), and C++ (derived from a marriage of C and Simula). What is of the
greatest interest to us is the class of languages we call object-based and object-
oriented. Object-based and object-oriented programming languages best support
the object-oriented decomposition of software.

The Topology of First- and Early Second-Generation Programming Languages.
To show precisely what we mean, let’s look at each generation of programming

languages in a slightly different way. In Figure 2-1, we see the topology of most
first- and early second-generation programming languages. This topology shows
the basic physical building blocks of the language, and how those parts can be
connected. In this figure, we see that for languages such as FORTRAN and
COBOL, the basic physical building block of all applications is the subprogram
(or the paragraph, for those who speak COBOL). Applications written in these
languages exhibit a relatively flat physical structure, consisting only of global
data and subprograms. The arrows in this figure indicate dependencies of the
subprograms on various data. During design, one can logically separate differ-
ent kinds of data from one another, but there is little in these languages that can
enforce these design decisions. An error in one part of a program can have a
devastating ripple effect across the rest of the system, because the global data
structures are exposed for all subprograms to see. When modifications are made
to a large system, it is difficult to maintain the integrity of the original design.
Often, entropy sets in: after even a short period of maintenance, a program writ-
ten in one of these languages usually contains a tremendous amount of cross-
coupling among subprograms, implied meanings of data, and twisted flows of
control, thus endangering the reliability of the entire system and certainly reduc-
ing the overall clarity of the solution.

The Object Mode!

Data
\) 1
Subprograms ~ [J \ \ F 0
d 0
Figure 2-2

The Topology of Late Second- and Early Third-Generation Programming Languages

The Topology of Late Second- and Early Third-Generation Programming
Languages. By the mid-1960s, programs were finally being recognized as im-
portant intermediate points between the problem and the computer [3]. As Shaw
points out, “The first software abstraction, now called the ‘procedural’ abstrac-
tion, grew directly out of this pragmatic view of software. . . . Subprograms
were invented prior to 1950, but were not fully appreciated as abstractions at
the time. . . . Instead, they were originally seen as labor-saving devices. .
Very quickly though, subprograms were appreciated as a way to abstract pro-
gram functions” [4]. The realization that subprograms could serve as an abstrac-
tion mechanism had three important consequences. First, languages were in-
vented that supported a variety of parameter-passing mechanisms. Second, the
foundations of structured programming were laid, manifesting themselves in
language support for the nesting of subprograms and the development of theo-
ries regarding control structures and the scope and visibility of declarations.
Third, structured design methods emerged, offering guidance to designers trying
to build large systems using subprograms as basic physical building blocks.
Thus, it is not surprising, as Figure 2-2 shows, that the topology of late second-
and early third-generation languages is largely a variation on the theme of ear-
lier generations. This topology addresses some of the inadequacies of earlier
languages, namely, the need to have greater control over algorithmic abstrac-
tions, but it still fails to address the problems of programming-in-the-large and
data design.

The Topology of Late Third-Generation Programming Languages. Starting with
FORTRAN 11, and appearing in most late third-generation program languages,
another important structuring mechanism evolved to address the growing issues
of programming-in-the-large. Larger programming projects meant larger

Concepts
Modules
[D—
-

Data

\ 1} 1

Subprograms B \ \ EX

O 0

Figure 2-3

The Topology of Late Third-Generation Programming Languages

development teams, and thus the need to develop different parts of the same
program independently. The answer to this need was the separately compiled
module, which in its early conception was little more than an arbitrary container
for data and subprograms, as Figure 2-3 shows. Modules were rarely recognized
as an important abstraction mechanism; in practice they were used simply to
group logically related subprograms. Most languages of this generation, while
supporting some sort of modular structure, had few rules that required semantic
consistency among module interfaces. A developer writing a subprogram for
one module might assume that it would be called with three different parame-
ters: a floating-point number, an array of ten elements, and an integer represent-
ing a Boolean flag. In another module, a call to this subprogram might incor-
rectly use actual parameters that violated these assumptions: an integer, an array
of five elements, and a negative number. Unfortunately, because most of these
languages had dismal support for data abstraction and strong typing, such errors
could be detected only during execution of the program.

The Topology of Object-Based and Object-Oriented Programming Languages.
The importance of data abstraction to mastering complexity is clearly stated by
Shankar: “The nature of abstractions that may be achieved through the use of
procedures is well suited to the description of abstract operations, but is not
particularly well suited to the description of abstract objects. This is a serious
drawback, for in many applications, the complexity of the data objects to be
manipulated contributes substantially to the overall complexity of the problem”
[5]. This realization had two important consequences. First, data-driven design
methods emerged, which provided a disciplined approach to the problems of
doing data abstraction in algorithmically oriented languages. Second, theories

TSR ST T e

The Object Mode!

1 1]
Z|E 2

The Topology of Small- to Moderate-Sized Applications Using Object-Based and Object-
Oriented Programming Languages

regarding the concept of a type appeared, which eventually found their realiza-
tion in languages such as Pascal.

The natural conclusion of these ideas first appeared in the language Simula
and was improved upon during the period of the language generation gap,
resulting in the relatively recent development of several languages such as
Smalitalk, Object Pascal, C++, CLOS, and Ada. For reasons that we will explain
shortly, these languages are called object-based or object-oriented. Figure 2-4
illustrates the topology of these languages for small- to moderate-sized applica-
tions. The physical building block in these languages is the module, which
represents a logical collection of classes and objects instead of subprograms, as
in earlier languages. To state it another way, “If procedures and functions are
verbs and pieces of data are nouns, a procedure-oriented program is organized
around verbs while an object-oriented program is organized around nouns” [6].
For this reason, the physical structure of a small- to moderate-sized object-
oriented application appears as a graph, not as a tree, which is typical of algo-
rithmically oriented languages. Additionally, there is little or no global data.
Instead, data and operations are united in such a way that the fundamental
logical building blocks of our systems are no longer algorithms, but classes and
objects.

32

Concepts

Figure 2-5
The Topology of Large Applications Using Object-Based and Object-Oriented
Programming Languages

By now we have progressed beyond programming-in-the-large and must
cope with programming-in-the-colossal. For very large systems, we find that
classes, objects, and modules provide an essential yet insufficient means of
decomposition. Fortunately, the object model scales up. In large systems, we
find clusters of abstractions built in layers on top of one another. At any given
level of abstraction, we find meaningful collections of objects that cooperate to
achieve some higher level behavior. If we look inside any given cluster to view
its implementation, we unveil yet another set of cooperative abstractions. This is
exactly the organization of complexity described in Chapter 1; its topology is
shown in Figure 2-5.

Foundations of the Object Model

Structured design methods evolved to guide developers who were trying to
build complex systems using algorithms as their fundamental building blocks.
Similarly, object-oriented design methods have evolved to help developers
exploit the expressive power of object-based and object-oriented programming
languages, using the class and object as basic building blocks.

The QObject Mode!

Actually, the object model has been influenced by a number of factors, not
just object-oriented programming. Indeed, as the sidebar further discusses, the
object model has proven to be a unifying concept in computer science, appli-
cable not only to programming languages, but to the design of user interfaces,
databases, knowledge bases, and even computer architectures. The reason for
this widespread appeal is simply that an object orientation helps us to cope
with the complexity inherent in many different kinds of systems.

Object-oriented design thus represents an evolutionary development, not a
revolutionary one; it does not break with advances from the past, but builds
upon proven ones. Unfortunately, most programmers today are formally and
informally trained only in the principles of structured design. Certainly, many
good engineers have developed and deployed countless useful software sys-
tems using these techniques. However, there are limits to the amount of com-
plexity we can handle using only algorithmic decomposition; thus we must turn
to object-oriented decomposition. Furthermore, if we try to use languages such
as C++ and Ada as if they were only traditional, algorithmically oriented lan-
guages, we not only miss the power available to us, but we usually end up
worse off than if we had used an older language such as C or Pascal. Give a
power drill to a carpenter who knows nothing about electricity, and he would
use it as a2 hammer. He will end up bending quite a few nails and smashing
several fingers, for a power drill makes a lousy hammer.

OOP, OOD, and OOA

Because the object model derives from so many disparate sources, it has unfor-
tunately been accompanied by a muddle of terminology. A Smalltalk program-
mer uses methods, a C++ programmer uses virtual member functions, and a
CLOS programmer uses generic functions. An Object Pascal programmer talks of
a type coercion; an Ada programmer calls the same thing a type conversion. To
minimize the confusion, let’s define what is object-oriented and what is not. The
glossary provides a summary of all the terms described here, plus many others.
Bhaskar has observed that the phrase object-oriented “has been bandied
about with carefree abandon with much the same reverence accorded
‘motherhood,’ ‘apple pie,’ and ‘structured programming’ "[7]. What we can agree
upon is that the concept of an object is central to anything object-oriented. In
the previous chapter, we informally defined an object as a tangible entity that
exhibits some well-defined behavior. Stefik and Bobrow define objects as
“entities that combine the properties of procedures and data since they perform
computations and save local state” [8]. Defining objects as entities begs the
question somewhat, but the basic concept here is that objects serve to unify the
ideas of algorithmic and data abstraction. Jones further clarifies this term by
noting that “in the object model, emphasis is placed on crisply characterizing
the components of the physical or abstract system to be modeled by a pro-
grammed system. . . . Objects have a certain ‘integrity’ which should not - in
fact, cannot — be violated. An object can only change state, behave, be
manipulated, or stand in relation to other objects in ways appropriate 10 that

Concepts

Foundations of the Object Model

As Yonezawa and Tokoro point out, “The term ‘object’ emerged almost indepen-
dently in various fields in computer science, almost simultaneously in the early
1970s, to refer to notions that were different in their appearance, yet mutually re-
lated. All of these notions were invented to manage the complexity of software
systems in such a way that objects represented components of a modularly de-
composed system or modular units of knowledge representation” (9]. Levy adds
that the following events have contributed to the evolution of object-oriented con-
cepts:

- "Advances in computer architecture, including capability systems and
hardware support for operating systems concepts

» Advances in programming languages, as demonstrated in Simula,
Smalitalk, CLU, and Ada

« Advances in programming methodology, including modularization and
information hiding” [10]

We would add to this list three more contributions to the foundation of the
object model:

+ Advances in database models
+ Research in artificial intelligence
» Advances in philosophy and cognitive science

The concept of an object had its beginnings in hardware over twenty years ago,
starting with the invention of descriptor-based architectures and, later,
capability-based architectures [11]. These architectures represented a break from
the classical von Neumann architectures, and came about through attempts to
close the gap between the high-level abstractions of programming languages and
the low-level abstractions of the machine itseif {12]. According to its proponents,
the advantages of such architectures are many: better error detection, improved
execution efficiency, fewer instruction types, simpler compilation, and reduced
storage requirements. Computers that have an object-oriented architecture include
the Burroughs 5000, the Plessey 250, and the Cambridge CAP [13]; SWARD {14];
the Intel 432 [15], Caltech’s COM [16], and the IBM System/38 [17]; the Rational
R1000, and the BiiN 40 and 60.

Closely related to developments in object-oriented architectures are
object-oriented operating systems. Dijkstra's work with the THE multiprogramming
system first introduced the concept of building systems as layered state machines
[18]. Other pioneering object-oriented operating systems include the
Plessey/System 250 (for the Plessey 250 multiprocessor), Hydra (for CMU’s
C.mmp), CALTSS (for the CDC 6400), CAP (for the Cambridge CAP computer),
UCLA Secure Unix (for the PDP 11/45 and 11/70), StarOS (for CMU's Cm*),
Medusa (also for CMU’s Cm*), and iMAX (for the Intel 432) [19].

Perhaps the most important contribution to the object model derives from the
class of programming languages we call object-based and object-oriented. The
fundamental-ideas of classes and objects first appeared in the language Simula
67. The Flex system, followed by various dialects of Smalltalk, such as
Smalltalk-72, -74, and -76, and finally the current version, Smalltalk-80, took
Simula’s object-oriented paradigm to its natural conclusion by making everything

The Object Model

in the language an instance of a class. in the 1970s languages such as Alphard,
CLU, Eucligd, Gypsy, Mesa, and Modula were developed, which supported the then
emerging ideas of data abstraction. More recently, language research has led to
the grafting of Simula and Smalltalk concepts onto traditional high-order pro-
gramming languages. The unification of object-oriented concepts with C has lead
to the languages C++ and Objective C. Adding object-oriented programming
mechanisms to Pascal has led to the languages Object Pascal, Eiffel, and Ada.
Additionally, there are many dialects of Lisp that incorporate the object-oriented
features of Simula and Smalitalk, including Flavors, LOOPS, and more recently,
the Common Lisp Object System {CLOS). The appendix discusses these and
other programming language developments in greater detail.

The first person to formalily identify the importance of composing systems in
layers of abstraction was Dijkstra. Parnas later introduced the idea of information
hiding [20], and in the 1970s a number of researchers, most notably Liskov and
Zilles [21], Guttag [22], and Shaw [23], pioneered the development of abstract data
type mechanisms. Hoare contributed to these developments with his proposal for
a theory of types and subclasses [24].

Although database technology has evolved somewhat independently of soft-
ware engineering, it has also contributed to the object model [25], primarily
through the ideas of the entity-relationship (ER) approach to data modeling [28]. In
the ER model, first proposed by Chen [27], the world is modeled in terms of its
entities, the attributes of these entities, and the relationships among these entities.

In the field of artificial intelligence, developments in knowledge representation
have contributed to an understanding of object-oriented abstractions. In 1975,
Minsky first proposed a theory of frames to represent real-world objects as per-
ceived by image and natural language recognition systems [28]. Since then,
frames have been used as the architectural foundation for a variety of intelligent
systems.

Lastly, philosophy and cognitive science have contributed to the advancement
of the object model. The idea that the world could be viewed either in terms of
objects or processes was a Greek innovation, and in the seventeenth century, we
find Descartes observing that humans naturally apply an object-oriented view of
the world [29]. In the twentieth century, Rand expanded upon these themes in her
philosophy of objectivist epistemology [30]. More recently, Minsky has proposed a
model of human intelligence in which he considers the mind to be organized as a
society of otherwise mindless agents {31]. Minsky argues that only through the
cooperative behavior of these agents do we find what we cail intelligence.

object. Stated differently, there exist invariant properties that characterize an
object and its behavior. An elevator, for example, is characterized by invariant
properties including [that] it only travels up and down inside its shaft. . . . Any
elevator simulation must incorporate these invariants, for they are integral to the
notion of an elevator” [32],

Object-Oriented Programming. What then, is object-oriented programming (or
OOP, as it is sometimes written)? We define it as follows:

36

Concepts

Object-oriented programming is a method of implementation in which
programs are organized as cooperative collections of objects, each of which
represents an instance of some class, and whose classes are all members of
a hierarchy of classes united via inberitance relationships,

There are three important parts to this definition: object-oriented programming
(1) uses objects, not algorithms, as its fundamental logical building blocks (the
“part of” hierarchy we introduced in Chapter 1); (2) each object is an instance
of some class; and (3) classes are related to one another via inberitance rela-
tionships (the “kind of” hierarchy we spoke of in Chapter 1). A program may
appear to be object-oriented, but if any of these elements is missing, it is not an
object-oriented program. Specifically, programming without inheritance is dis-
tinctly not object-oriented; we call it programming with abstract data types.

By this definition, some languages are object-oriented, and some are not.
Stroustrup suggests that “if the term ‘object-oriented language’ means anything,
it must mean a language that has mechanisms that support the object-oriented
style of programming well. . . . A language supports a programming style well if
it provides facilities that make it convenient to use that style. A language does
not support a technique if it takes exceptional effort or skill to write such pro-
grams; in that case, the language merely enables programmers to use the tech-
niques” [33]. From a theoretical perspective, one can fake object-oriented pro-
gramming in non-object-oriented programming languages like Pascal and even
COBOL or assembly language, but it is horribly ungainly to do so. Cardelli and
Wegner thus say “that a language is object-oriented if and only if it satisfies the
following requirements:

» It supports objects that are data abstractions with an interface of
named operations and a hidden local state

* Objects have an associated type [class]

* Types [classes] may inherit attributes from supertypes [superclasses)”
[34]

For a language to support inheritance means that it is possible to express “kind
of” relationships among types, such as a red rose is a kind of flower, and a
flower is a kind of plant. If a language does not provide direct support for in-
heritance, then it is not object-oriented. Cardelli and Wegner distinguish such
languages by calling them object-based rather than object-oriented. Under this
definition, Smalltalk, Object Pascal, C++, and CLOS are all object-oriented, and
Ada is object-based. However, since objects and classes are elements of both
kinds of languages, it is possible and highly desirable for us to use object-
oriented design methods for both object-based and object-oriented program-
ming languages.

Object-Oriented Design. The emphasis in programming methods is primarily on
the proper and effective use of particular language mechanisms. By contrast,

The Object Mode!

design methods emphasize the proper and effective structuring of a complex
system. What then is object-oriented design? We suggest that

Object-oriented design is a method of design encompassing the process of
object-oriented decomposition and a notation for depicting both logical
and physical as well as static and dynamic models of the system under
design.

There are two important parts to this definition: object-oriented design (1) leads
1o an object-oriented decomposition and (2) uses different notations to express
different models of the logical (class and object structure) and physical (module
and process architecture) design of a system.

The support for object-oriented decomposition is what makes object-
oriented design quite different from structured design: the former uses class and
object abstractions to logically structure systems, and the latter uses algorithmic
abstractions. We will use the term object-oriented design to refer to any method
that leads to an object-oriented decomposition. We will occasionally use the
acronym OOD to designate the particular method of object-oriented design
described in this book.

Object-Oriented Analysis. The object model has influenced even earlier phases
of the software development life cycle. Traditional structured analysis tech-
niques, best typified by the work of DeMarco [35], Yourdon [36], and Gane and
Sarson [37], with real-time extensions by Ward and Mellor [38] and by Hatley
and Pirbhai [39], focus upon the flow of data within a system. Object-oriented
analysis (or OOA4, as it is sometimes called) emphasizes the building of real-
world models, using an object-oriented view of the world:

Object-oriented analysis is a method of analysis that examines require-
ments from the perspective of the classes and objects found in the vocabu-
lary of the problem domain.

How are OOA, OOD, and OOP related? Basically, the products of object-
oriented analysis can serve as the models from which we may start an object-
oriented design; the products of object-oriented design can then be used as
blueprints for completely implementing a system using object-oriented pro-
gramming methods.

2.2 Elements of the Object Model

Kinds of Programming Paradigms

Jenkins and Glasgow observe that “most programmers work in one language
and use only one programming style. They program in a paradigm enforced by
the language they use. Frequently, they have not been exposed to alternate

38

Concepts

ways of thinking about a problem, and hence have difficulty in seeing the
advantage of choosing a style more appropriate to the problem at hand” [40].
Bobrow and Stefik define a programming style as “a way of organizing pro-
grams on the basis of some conceptual model of programming and an appro-
priate language to make programs written in the style clear” {41]. They further
suggest that there are five main kinds of programming styles, here listed with
the kinds of abstractions they employ:

» Procedure-oriented Algorithms

* Object-oriented Classes and objects
» Logic-oriented Goals, often expressed in a predicate calculus
» Rule-oriented If-then rules

» Constraint-oriented Invariant relationships

There is no single programming style that is best for all kinds of applications.
For example, rule-oriented programming would be best for the design of a
knowledge base. The object-oriented style, from our observations, is best suited
to the broadest set of applications, namely, industrial-strength software in which
complexity is the dominant issue.

Each of these styles of programming is based upon its own conceptual
framework. Each requires a different mindset, a different way of thinking about
the problem. For all things object-oriented, the conceptual framework is the
object model. There are four major elements of this model:

+ Abstraction

» Encapsulation
* Modularity

» Hierarchy

By major, we mean that a model without any one of these elements is not
object-oriented.
There are three minor elements of the object model:

* Typing
+ Concurrency

* Persistence

By minor, we mean that each of these elements is a useful, but not essential,
part of the object model.

Without this conceptual framework, you may be programming in a lan-
guage such as Smalltalk, Object Pascal, C++, CLOS, or Ada, but your design is
going to smell like a FORTRAN, Pascal, or C application. You will have missed
out on or otherwise abused the expressive power of the object-based or

The QObject Mode/

Abstraction focuses upon the essential characteristics of some object, relative to the
perspective of the viewer.

object-oriented language you are using for implementation. More importantly,
you are not likely to have mastered the complexity of the problem at hand.

Abstraction

The Meaning of Abstraction. Abstraction is one of the fundamental ways that we
as humans cope with complexity. Hoare suggests that “abstraction arises from a
recognition of similarities between certain objects, situations, or processes in the
real world, and the decision to concentrate upon these similarities and to ignore
for the time being the differences” [42]. Shaw defines an abstraction as “a sim-
plified description, or specification, of a system that emphasizes some of the
system's details or properties while suppressing others. A good abstraction is
one that emphasizes details that are significant to the reader or user and sup-
presses details that are, at least for the moment, immaterial or diversionary” [43].
Berzins, Gray, and Naumann recommend that “a concept qualifies as an abstrac-
tion only if it can be described, understood, and analyzed independently of the
mechanism that will eventually be used to realize it” [44]. Combining these dif-
ferent viewpoints, we define an abstraction as follows:

An abstraction denotes the essential characteristics of an object that distin-
guish it from all other kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer.

Concepts

An abstraction focuses on the outside view of an object, and so serves to
separate an object’s essential behavior from its implementation. Abelson and
Sussman call this behavior/implementation division an abstraction barrier [45]
achieved by applying the principle of least commitment, through which the
interface of an object provides its essential behavior, and nothing more [46]. We
like to use an additional principle that we call the principle of least astonish-
ment, through which an abstraction captures the entire behavior of some object,
no more and no less.

Deciding upon the right set of abstractions for a given domain is the central
problem in object-oriented design. Because this topic is so important, the whole
of Chapter 4 is devoted to it.

Seidewitz and Stark suggest that “there is a spectrum of abstraction, from
objects which closely model problem domain entities to objects which really
have no reason for existence” [47]. From the most to the least useful, these
kinds of abstractions include the following:

* Entity abstraction An object that represents a useful
model of a problem-domain
entity

* Action abstraction An object that provides a

generalized set of operations, all
of which perform the same kind
of function

Virtual machine abstraction An object that groups together
operations that are all used by
some superior level of control,
or operations that all use some
junior-level set of operations

+ Coincidental abstraction An object that packages a set of
operations that have no relation
to each other

We strive to build entity abstractions, because they directly parallel the vocabu-
lary of a given problem domain.

A client is any object that uses the resources of another object. We charac-
terize the behavior of an object by considering the operations that its clients
may perform upon it, as well as the operations that it may perform upon other
objects. This view forces us to concentrate upon the outside view of an object.
We call the entire set of operations that a client may perform upon an object its
protocol. A protocol denotes the ways in which an object may act and react, and
thus constitutes the entire static and dynamic outside view of the abstraction.

As an aside, the terms operation, method and member Sfunction evolved
from three different programming cultures (Ada, Smalitalk, and C++, respec-
tively). They all mean virtually the same thing, and so we will use them inter-
changeably.

The Object Mode!

All abstractions have static as well as dynamic properties. For example, a
file object takes up a certain amount of space on a particular memory device; it
has a name, and it has contents. These are all static properties. The value of
each of these properties is dynamic, relative to the lifetime of the object: a file
object may grow or shrink in size, its name may change, its contents may
change. In a procedure-oriented style of programming, the activity that changes
the dynamic value of objects is the central part of all programs: things happen
when subprograms are called and statements are executed. In a rule-oriented
style of programming, things happen when new events cause rules to fire,
which in turn may trigger other rules, and so on. In an object-oriented style of
programming, things happen whenever we operate upon an object (in Smalltalk
terminology, when we send a message to an object). Thus, invoking an opera-
tion upon an object elicits some reaction from the object. What operations we
can meaningfully perform upon an object and how that object reacts constitute
the entire behavior of the object.

Examples of Abstraction. Let's illustrate these concepts with some examples.
Our purpose here is to show how we can concretely express abstractions, not
so much how we find the right abstractions for the given problem. We defer a
complete treatment of this latter topic to Chapter 4.

On a hydroponics farm, plants are grown in a nutrient solution, without
sand, gravel, or other soils. Maintaining the proper greenhouse environment is a
delicate job, and depends upon the kind of plant being grown and its age. One
must control diverse factors such as temperature, humidity, light, pH, and nutri-
ent concentrations. On a large farm, it is not unusual to have an automated
system that constantly monitors and adjusts these elements. Simply stated, the
purpose of an automated gardener is to efficiently carry out, with minimal
human intervention, growing plans for the healthy production of multiple crops.

One of the key abstractions in this problem is that of a sensor. Actually,
there are several different kinds of sensors. Anything that affects production
must be measured, and so we must have sensors for air and water temperature,
humidity, light, pH, and nutrient concentrations, among other things. Viewed
from the outside, an air temperature sensor is simply an object that knows how
to measure the temperature at some specific location. What is a temperature? It
is some numeric value, within a limited range of values and with a certain pre-
cision, that represents degrees in the scale of Fahrenheit, Centigrade, or Kelvin,
whichever is most appropriate for our problem. What then is a location? It is
some identifiable place on the farm at which we desire to measure the tempera-
ture; presumably, there are only a few such locations. What is important for an
air temperature sensor is not sO much where it is located, but the fact that it has
a unique location and identity from all other air temperature sensors. Now we
are ready to ask What operations can a client perform upon an air temperature
sensor? Our design decision is that a client can calibrate it, as well as ask what
the current temperature is.

Let's use Ada to capture these design decisions. For those readers who are
not familiar with Ada, or for that matter any of the other object-based and

Concepts

object-oriented languages we use in this book, the appendix provides a brief
overview of each language, with examples. In Ada, we might write the follow-
ing package specification that captures our abstraction of an air temperature
Sensor:

package Tatperature Sensors is

type Tamperature is delta 0.01 range -10.0 .. 150.0;
— tarperature in degrees Fahrenheit

type Location is range 0 .. 63;
— a nuber dencting the locaticon of a sensor

type Alr Terperature Sensor is limited private;
— the air tamperature sensor class

procedure Initialize (The Sensor @ in Air Tenperature Sensor;
Its Location @ in Location);

procedure Calibrate (Tre Sensor : in out Air Temperature Sensor;
Actual Temperature : in Terperature) ;

function Qurrent Temperature (The Sensor : in Air Temperature Sensor)
return Temperature;

private
end Temperature Sensors;

This package exports three types, Temperature, Location, and
Air Temperature Sensor. The type Temperature is a fixed point type repre-
senting temperature in degrees Fahrenheit. The type Location denotes the
places where air temperature sensors may be deployed throughout the farm,
Lastly, the type Air Temperature_Sensor captures our abstraction of a sensor
itself; its representation is hidden in the private part and body of the package.
Because each type represents a class and not an individual object, we must
first create an instance so that we have something upon which to operate. For

example, we might write:

with Tenperature Sensors;
use Tarperature Sensors;

Greenhouse 1 Terperature Sensor : Alr Tarperature Sensor;
Greenhouse 2 Terperature Sensor : Air Terperature Sensor;
The Temperature : Terperature;

begin
Initialize (Greenhouse 1 Tenperature Sensor, Its Location => 1);
Initialize (Greenhouse 2 Tenperature Sensor, Its Lecation => 2);
The Tenperature := Current Temperature (Greenhouse 1 Temperature Sensor);

end;

The Object Mode!

The abstraction we have described thus far is passive; some other object must
operate upon an air temperature sensor to determine its value. There is another
possible abstraction that may be more or less appropriate depending upon the
broader system-design decisions we might make. Rather than the air tempera-
ture sensor being passive, we might make it active, so that it is not acted upon
but rather acts upon other objects whenever the temperature changes a certain
number of degrees. This abstraction is almost the same as our first one, except
that we must turn our interface inside out. Thus, we might write the [ollowing:

package Terperature Sensors is

type Tarperature is delta 0.01 range -10.0 .. 150.0;
— tamperature in degrees Fahrenheit

type Location is range 0 .. 63;
— a nurber dencting the location of & sensor

gereric
with procedure Temperature Has Changed (The Location : in Location;
New Tenperature : in Temperature);
with procedure Temperature Alarm (The Location : in Lecation;

New Terperature : in Tenperature);
package Alr Terperature Senscrs is

type Air Temperature Sensor is Iimited private;
— the air temperature sensor class

procedure Initialize (The Sensor : in Air Temperature Senscr;
Tts Locaticn . in Location;
Lower Alarm Limit : in Temperature;
Upper Alarm Limit : in Temperature);

procecire Calibrate (The Sensor : in out Air Terperature Sensor;
Actual Temperature : in Temperature) ;

private
erd Air Terperature Sensors;
erd Tarperature Sensors;

This package is a bit more complicated than the first, but it captures our new
abstraction quite well. The only operations we may perform upon an air tem-
perature sensor object are Initialize and Calibrate. During its lifetime, each
air temperature sensor may itself invoke the operations
Temperature Has_Changed Of Temperature_Alarm (O notify some other object
that an interesting event has occurred. This package thus shows how in Ada we
can describe our design decisions regarding what operations we can perform
upon an object, as well as the operations an object can perform upon others.
Let's consider a different abstraction, this time using C++. For each crop,
there must be a growing plan that describes how temperature, light, nutrients,
and other factors should change over time to maximize the harvest. A growing

Concepts

plan is a legitimate entity abstraction, because it forms part of the vocabulary of
the problem domain. Each crop has its own growing plan, but the growing
plans for all crops take the same form. Basically, a growing plan is a table of
times versus actions. For example, on day 15 in the lifetime of a certain crop,
our growing plan might be to maintain an air temperature of 78°F for 16 hours,
turn on the lights for 14 of these hours, and then drop the air temperature to
65°F for the rest of the day, We might also want to add certain extra nutrients in
the middie of the day, yet maintain a slightly acidic pH.

From the perspective of the outside of each growing-plan object, we must
be able to establish the details of a plan, modify a plan, and execute a plan. For
example, there might be an object that sits at the boundary of the
human/machine interface and translates human input into plans. This is the
object that establishes the details of a growing plan, and so it must be able to
change the state of a growing-plan object. There must also be an object that
carries out the growing plan, and it must be able to read the details of a plan
for a particular time.

As this example points out, no object stands alone; every object cooperates
with other objects to achieve some behavior. Our design decisions about how
these objects collaborate define the boundaries of each abstraction and thus the
protocol of each object.

Using C++, we might capture our design decisions for a growing plan as
follows:

typedef int day;
typedef int hour;
typedef float tamperature;

typedef float h;
typedef fleat concentration;

aum boolean (CFF, Qi};

class GrowirgPlan {

phlic:
GrowirgPlan ();
GrowingPlan {omst GrowirgPlank) ;
virtwal ~CGrowingPlan () ;

virtual wvoid clearThePlan {);

virtual void establish (day thelay,
hour thebaur,
tamperature thelanperature,
hoolean lightstn,
ch thePh,

omoentration thelutrientConcentration) ;

virtual tarperature desiredlamperature (day thelay, hor thebour) oonst;
virtual koolsan lightStatus (day thelay, hour thetour) const;
virtual ph desiredrh (day chelmy, hoaxr thafour) omst;
virtial concentration desiredNutrients (day thelay, hor thebour) oamst;

};

The Object Mode!

Notice our use of the typedefs. Our style is always to explicitly declare types so
that they are expressed in the vocabulary of our problem domain, unless there
is some compelling reason to do otherwise. In the interface of the class
GrowingPlan, we have intentionally left out the private members (designated
by the ellipses), because at this point in our design we wish 1o focus only upon
the behavior of the class, not its representation. In C++, members are private
unless explicitly asserted otherwise. In the public part, we have exported
constructor and destructor member functions (which provide for the birth and
death of an object, respectively), two modifiers (the member functions
clearThePlan and establish), and four selectors, one to query each of the
interesting aspects of a growing plan at a given day and hour of the day. Our
style is also to declare each member function as virtual unless there is a
compelling reason to do otherwise, so that any subclasses of this class can
redefine the operation as necessary.

As in our Ada example, the class GrowingPlan represents only our abstrac-
tion, not an object upon which a client may operate. Therefore at some place in
our program, we must create instances of this class.

Encapsulation

The Meaning of Encapsulation. The abstraction of an object should precede the
decisions about its implementation. Once an implementation is selected, it
should be treated as a secret of the abstraction and hidden from most clients. As
Ingalls wisely suggests, “No part of a complex system should depend on the
internal details of any other part” [48]. Whereas abstraction “helps people to
think about what they are doing,” encapsulation “allows program changes to be
reliably made with limited effort” [49].

Abstraction and encapsulation are complementary concepts: abstraction
focuses upon the outside view of an object and encapsulation — also known as
information biding — prevents clients from seeing its inside view, where the
behavior of the abstraction is implemented. In this manner, encapsulation pro-
vides explicit barriers among different abstractions. For example, consider again
the structure of a plant: to understand how photosynthesis works at a high level
of abstraction, we can ignore details such as the roots or the mitochondria in
plant cells. Similarly, in designing a database application, it is standard practice
to write programs so that they don't care about the physical representation of
data, but depend only upon a schema that denotes the data’s logical view [50].
In both of these cases, objects at higher levels of abstraction are shielded from
lower level implementation details.

Liskov goes as far as to suggest that “for abstraction to work, implementa-
tions must be encapsulated” (51]. In practice, this means that each class must
have two parts: an interface and an implementation. The interface of a class
captures only its outside view, encompassing our abstraction of the behavior
common to all instances of the class. The implementation of a class comprises
the representation of the abstraction as well as the mechanisms that achieve the
desired behavior. This explicit division of interface/implementation represents a

Concepts

. it

Encapsulation hides the details of the implementation of an object.

clear separation of concerns: the interface of a class is the one place where we
assert all of the assumptions that a client may make about any instances of the
class; the implementation encapsulates details about which no client may make
assumptions. Britton and Parnas call these details the “secrets” of an abstraction
[52].

To summarize, we define encapsulation as follows:

Encapsulation is the process of biding all of the details of an object that do
not contribute to its essential characteristics.

In practice, one hides the representation of an object, as well as the implemen-
tation of its methods.

Examples of Encapsulation. To illustrate the use of encapsulation, let’s return to
the problem of the hydroponics gardening system. Another key abstraction in
this problem domain is that of a heater, used to maintain a fixed temperature in
each greenhouse. A heater is at a fairly low level of abstraction, and thus we
might decide that there are only three meaningful operations that we can per-
form upon this object: turn it off, turn it on, and find out if it is running. As is
common with our style, we also include metaoperations, namely, constructor
and destructor operations that initialize and free instances of this class, respec-
tively. Because our system might have multiple heaters, we use the initialize
method to associate each software object with a physical heater. Given these

The Object Mode!

design decisions, we might write the interface of the class Heater in Smalltalk as
follows:

Together with suitable documentation that describes the meaning of each of
these operations, this interface represents all that a client needs to know about
instances of the class Heater.

Turning to the inside view of this class, we have an entirely different per-
spective. One reasonable implementation decision might be to use an elec-
tromechanical relay that controls the power going to each physical heater, with
the relays in turn commanded by messages sent along serial ports from the
computer. Sending a character with all bits set to one might turn on the heater,
and sending a character with all bits set to zero might turn off the heater. We
can thus complete the implementation of the class Heater as follows:

(bject subclass: ##Heater
instanceVariableNames: 'thePort isOn'
classVariableNames: '’
poolDicticnaries: '!

category: 'Hydroponics Gardening System!

initialize: thelocati
"Initialize the heater device driver by opening an RS232 port
associated with the given location. thelocation is expected to
ke of the class Location.”

thePort ¢~ RS232Port open: thelocation.
istn ¢ false

release
"Release the RS232 port associated with this heater.”

thePort release.
thePort ¢ nil

isOn
"Petirn trne if the heater is on, false otherwise."

Tisn

Concepts

rbias 53

"Tum off the heater by writing a character with all bits reset
tc the R5232 port."

| aString |

aString ¢ String new: 1.

aStrirg at: 1 pu: (Character value: 0).
thePort serdBaffer: aStrirg.

istn « false.

aString release

txrin
"Turn on the heater by writing a character with all bits set
to the RS232 port.”

| aString |

aString ¢ String new: 1.

aString at: 1 put: (Character value: 25%5).
thePort sendBuffer: aString.

1s0n ¢« true.

aString release

The two instance variables (thePort and isOpen) form the representation of this
class which, according to the rules of Smalltalk, are encapsulated. If a developer
writes code outside of this class that references these variables, Smalltalk refuses
to accept the code by responding with an error message.

Suppose that for whatever reason the hardware architecture of our system
changed, and its designers decided to use memory-mapped I/O instead of serial
communication lines. We would not need to change the interface of this class;
we would only need to modify its implementation. Because of Smalltalk’s obso-
lescence rules, we would have to recompile this class and the closure of its
clients, but because the functional behavior of this abstraction would not
change, we would not have to modify any code that used this class unless a
particular client depended upon the time or space characteristics of the original
implementation (which would be highly undesirable and so very unlikely, in
any case).

Intelligent encapsulation localizes design decisions that are likely to change.
As a system evolves, its developers might discover that in actual use, certain
operations take longer than acceptable or that some objects consume more
space than is available. In such situations, the representation of an object is
often changed so that more efficient algorithms can be applied or so that one
can optimize for space by calculating rather then storing certain data. This abil-
ity to change the representation of an abstraction without disturbing any of its
clients is the essential benefit of encapsulation.

Ideally, attempts to access the underlying representation of an object should
be detected at the time a client’s code is compiled. How a particular language
should address this matter is debated with great religious fervor in the object-
oriented programming language community. As we have seen, Smalltalk pre-
vents a client from directly accessing the instance variables of another class;
violations are detected at the time of compilation. On the other hand, Object

3z
b
i
g

The Object Mode!

Pascal does not encapsulate the representation of a class, so there is nothing in
the language that prevents clients from referencing the fields of another object.
CLOS takes an intermediate position, giving the developer explicit control over
encapsulation. Each slot may have one of the slot options :reader, :writer, or
:accessor, which grant a client read access, write access, or read/write access,
respectively. If none of these options are used, then the slot is fully encapsu-
lated. C++ offers even more flexible control over the visibility of member ob-
jects and member functions. Specifically, members may be placed in the public,
private, or protected parts of a class. Members declared in the public parts are
visible to all clients; members declared in the private parts are fully encapsu-
lated; and members declared in the protected parts are visible only to the class
itself and its subclasses. C++ also supports the notion of friends: cooperative
classes that are permitted to see each other’s private parts.

Hiding is a relative concept: what is hidden at one level of abstraction may
represent the outside view at another level of abstraction. The underlying repre-
sentation of an object can be revealed, but in most cases only if the creator of
the abstraction explicitly exposes the implementation, and then only if the client
is willing to accept the resulting additional complexity. Thus, encapsulation
cannot stop a developer from doing stupid things: as Stroustrup points out,
“Hiding is for the prevention of accidents, not the prevention of fraud” {53]. Of
course, nothing in any of the programming languages we use in this book
prevents a human from literally seeing the implementation of a class, although
an operating system might deny access to a particular file that contains the
implementation of a class. In practice, there are times when one must study the
implementation of a class to really understand its meaning, especially if the
external documentation is lacking.

Modularity

The Meaning of Modularity. As Myers observes, “The act of partitioning a pro-
gram into individual components can reduce its complexity to some degree. . . .
Although partitioning a program is helpful for this reason, a more powerful jus-
tification for partitioning a program is that it creates a number of well-defined,
documented boundaries within the program. These boundaries, or interfaces,
are invaluable in the comprehension of the program” [54). In some languages,
such as Smalltalk, there is no concept of a module, and so the class forms the
only physical unit of decomposition. In many others, including Object Pascal,
C++, CLOS, and Ada, the module is a separate language construct, and therefore
warrants a separate set of design decisions. In these languages, classes and
objects form the logical structure of a system; we place these abstractions in
modules to produce the system’s physical architecture. Especially for larger
applications, in which we may have many hundreds of classes, the use of
modules is essential to help manage complexity.

Liskov states that “modularization consists of dividing a program into mod-
ules which can be compiled separately, but which have connections with other
modules. We will use the definition of Parnas: ‘The connections between

Concepts

Modularity packages abstractions into discrete units.

modules are the assumptions which the modules make about each other’ ” (55].
Most languages that support the module as a separate concept also distinguish
between the interface of a module and its implementation. Thus, it is fair to say
that modularity and encapsulation go hand in hand, As with encapsulation, par-
ticular languages support modularity in diverse ways. For example, modules in
C++ are nothing more than separately compiled files. The traditional practice in
the C/C++ community is to place module interfaces in files named with
a .b suffix; these are called beader files. Module implementations are placed in
files named with a .¢ suffix. Dependencies among files can then be asserted
using the #include macro. This approach is entirely one of convention; it is
neither required nor enforced by the language itself, Object Pascal is a little
more formal about the matter. In this language, the syntax for units (its name
for modules) distinguishes between module interface and implementation,
Dependencies among units may be asserted only in a module's interface. Ada
goes one step further. A package (its name for modules) has two parts, the
package specification and the package body. Unlike Object Pascal, Ada allows
connections among modules to be asserted separately in the specification and
body of a package. Thus, it is possible for a package body to depend upon
modules that are otherwise not visible to the package’s specification.

Deciding upon the right set of modules for a given problem is almost as
hard a problem as deciding upon the right set of abstractions. Zelkowitz is
absolutely right when he states that “because the solution may not be known
when the design stage starts, decomposition into smaller modules may be quite

The Object Model

difficult. For older applications (such as compiler writing), this process may
become standard, but for new ones (such as defense systems or spacecraft con-
trol), it may be quite difficult” {56].

Modules serve as the physical containers in which we declare the classes
and objects of our logical design. This is no different than the situation faced by
the electrical engineer designing a board-level computer. NAND, NOR, and
NOT gates might be used to construct the necessary logic, but these gates must
be physically packaged in standard integrated circuits, such as a 7400, 7402, or
7404. Lacking any such standard software parts, the software engineer has con-
siderably more degrees of freedom — as if the electrical engineer had a silicon
foundry at his or her disposal.

For tiny problems, the developer might decide to declare every class and
object in the same package. For anything but the most trivial software, a better
solution is to group logically related classes and objects in the same module,
and expose only those elements that other modules absolutely must see. This
kind of modularization is a good. thing, but it can be taken to extremes. For
example, consider an application that runs on a distributed set of processors
and uses a message. passing mechanism to coordinate the activities of different
programs. In a large system, like that described in Chapter 12, it is common to
have several hundred or even a few thousand kinds of messages. A naive strat-
egy might be to define each message class in its own module. As it turns out,
this is a singularly poor design decision. Not only does it create a documenta-
tion nightmare, but it makes it terribly difficult for any users to find the classes
they need. Furthermore, when decisions change, hundreds of modules must be
modified or recompiled. This example shows how information hiding can
backfire [57]. Arbitrary modularization is sometimes worse than no modulariza-
tion at all.

In traditional structured design, modularization is primarily concerned with
the meaningful grouping of subprograms, using the criteria of coupling and
cohesion. In object-oriented design, the problem is subtly different: the task is
to decide where to physically package the classes and objects from the design’s
logical structure, which are distinctly different from subprograms.

Our experience indicates that there are several useful technical as well as
nontechnical guidelines that can help us achieve an intelligent modularization
of classes and objects. As Britton and Parnas have observed, “The overall goal
of the decomposition into modules is the reduction of software cost by allowing
modules to be designed and revised independently. . . . Each module’s structure
should be simple enough that it can be understood fully; it should be possible
to change the implementation of other modules without knowledge of the
implementation of other modules and without affecting the behavior of other
modules; [and] the ease of making a change in the design should bear a reason-
able relationship to the likelihood of the change being needed” [58]. There is 2
pragmatic edge to these guidelines. In practice, the cost of recompiling the
body of a module is relatively small: only that unit need be recompiled and the
application relinked. However, the cost of recompiling the interface of a mod-
ule is relatively high. Especially with strongly typed languages, one must re-

Concepts

compile the module interface, its body, all other modules that depend upon this
interface, the modules that depend upon these modules, and so on. Thus, for
very large programs (assuming that our development environment does not
support incremental compilation), a change in a single module interface might
result in many hours of recompilation. Obviously, a manager cannot often af-
ford to allow this. For this reason, a module’s interface should be as narrow as
possible, yet still satisfy the needs of all using modules. Qur style is to hide as
much as we can in the implementation of a module. Incrementally shifting
declarations from a module implementation to its interface is far less painful and
destabilizing than ripping out extraneous interface code.

The developer must therefore balance two competing technical concerns:
the desire to encapsulate abstractions, and the need to make certain abstractions
visible to other modules. Parnas, Clements, and Weiss offer the following guid-
ance: “System details that are likely to change independently should be the
secrets of separate modules; the only assumptions that should appear between
modules are those that are considered unlikely to change. Every data structure
is private to one module; it may be directly accessed by one or more programs
within the module but not by programs outside the module. Any other program
that requires information stored in a module’s data structures must obtain it by
calling module programs” [59]. In other words, strive to build modules that are
cohesive (by grouping logically related abstractions) and loosely coupled (by
minimizing the dependencies among modules). From this perspective, we may
define modularity as follows:

Modularity is the property of a system that bas been decomposed into a set
of cobhesive and loosely coupled modules.

Thus, the principles of abstraction, encapsulation, and modularity are synergis-
tic. An object provides a crisp boundary around a single abstraction, and both
encapsulation and modularity provide barriers around this abstraction.

Two additional technical issues can affect modularization decisions. First,
since modules usually serve as the elementary and indivisible units of software
that can be reused across applications, a developer might chose to package
classes and objects into modules in a way that makes their reuse convenient.
Second, many compilers generate object code in segments, one for each mod-
ule. Therefore, there may be practical limits on the size of individual modules.
With regard to the dynamics of subprogram calls, the placement of declarations
within modules can greatly affect the locality of reference and thus the paging
behavior of a virtual memory system. Poor locality happens when subprogram
calls occur across segments and lead to cache misses and page thrashing that
ultimately slow down the whole system.

Several competing nontechnical needs may also affect modularization deci-
sions. Typically, work assignments in a development team are given on a mod-
ule-by-module basis, and so the boundaries of modules may be established to
minimize the interfaces among different parts of the development organization.
Senior designers are usually given responsibility for module interfaces, and

The Object Model!

more junior developers complete their implementation. On a larger scale, the
same situation applies with subcontractor relationships. Abstractions may be
packaged so as to quickly stabilize the module interfaces as agreed upon
among the various companies. Changing such interfaces usually involves much
wailing and gnashing of teeth — not to mention a vast amount of paperwork —
and so this factor often leads to conservatively designed interfaces. Speaking of
paperwork, modules also usually serve as the unit of documentation and con-
figuration management. Having ten modules where one would do means ten
times the paperwork, and so, unfortunately, sometimes the documentation re-
quirements drive the module design decisions (usually in the most negative
way). Security may also be an issue: most code may be considered unclassified,
but other code that might be classified secret or higher is best placed in sepa-
rate modules.

Juggling these different guidelines is difficult, but don't lose sight of the
most important point: finding the right classes and objects and then organizing
them into separate modules are entirely independent design decisions. The
identification of classes and objects is part of the logical design of the system,
but the identification of modules is part of the system's physical design. One
cannot make all the logical design decisions before making all the physical
ones, or vice versa, rather, these design decisions happen iteratively.

Examples of Modularity. Let’s look at modularity in the hydroponics gardening
system. Suppose that instead of building some special-purpose hardware, we
decide to use a commercially available workstation for the user interface. At this
workstation, an operator could create new growing plans, modify old ones, and
follow the progress of currently active ones. Because Object Pascal is available
on a variety of platforms, we might choose to use it to implement this part of
the system.

One of the key abstractions here is that of a growing plan. We might there-
fore create a module called UGrowingPlans, whose purpose is to collect all of
the classes associated with individual growing plans. In Object Pascal, we might
write the framework of this unit as follows:

it GrowingPlans; interface

implerentation
{SI WarowingPlans.incl.p}
erd,

The ellipses mark the location of the declarations that must be exposed to other
units. The implementations of these classes, objects, and free subprograms then
appear in the implementation of this module, the unit we named
UGrowingPlans.incl.p.

We might also define a module called UGardeningDialogs, whose purpose
is to collect all of the code associated with dialog boxes. This unit most likely
depends upon the classes declared in the interface of UGrowingPlans, and so
we might write its framework as follows:

Concepts
it UGardeningDialogs; interface

uses
MenfTypes, QuickDraw, CSIntf, Tcollmtf, PackIntf, CursorCtl,
WATil, WiewCoords, UFailure, Memory, WMenuSetup,
Whject, UList, UAssociation, WMachop,
UGrowingPlans;

implementation

{$I UGardeningDialogs.incl.p})
end.

This unit implementation requires a number of lower level interfaces, and so its
interface must import several other units in addition to UGrowingPlans,

Our design might include many other units, such as UGardeningCommands,
UGardeningViews, UGardeningDocuments, and UGardeningApplication, each of
which imports the interface of lower level units. Ultimately, we must define
some main program from which we can invoke this application from the
operating system. In object-oriented design, defining this main program is often
the least important decision, whereas in traditional structured design, the main
program serves as the root, the keystone that holds everything else together, We
suggest that the object-oriented view is more natural, for as Meyer observes,
“Practical software systems are more appropriately described as offering a
number of services. Defining these systems by single functions is usually
possible, but yields rather artificial answers. . . . Real systems have no top” {60].

Hierarchy

The Meaning of Hierarchy. Abstraction is a good thing, but in all except the most
trivial applications, we may find many more different abstractions than we can
comprehend at one time. Encapsulation helps manage this complexity by hiding
the inside view of our abstractions. Modularity helps also, by giving us a way to
cluster logically related abstractions. Still, this is not enough. A set of abstrac-
tions often forms a hierarchy, and by identifying these hierarchies in our design,
we greatly simplify our understanding of the problem.
We define hierarchy as follows:

Hierarchy is a ranking or ordering of abstractions.

The two most important hierarchies in a complex system are its class structure
(the “kind of” hierarchy) and its object structure (the “part of” hierarchy).

Examples of Hierarchy: Single Inheritance. Inheritance is the most important
“kind of” hierarchy, and as we noted earlier, it is an essential element of object-
oriented systems. Basically, inheritance defines a relationship among classes,
wherein one class shares the structure or behavior defined in one or more
classes (called single inberitance and multiple inberitance, respectively).

The Object Model

it - ‘E@ /
(%
‘(-’~‘rl\\\ "Q
o

Abstractions form a hierarchy.

Concepts

Inheritance thus represents a hierarchy of abstractions, in which a subclass
inherits from one or more superclasses. Typically, a subclass augments or rede-
fines the existing structure and behavior of its superclasses.

Consider the different kinds of growing plans we might use in the hydro-
ponics gardening system. An earlier section described our abstraction of a very
generalized growing plan. Different crops, however, might demand specialized
growing plans. For example, the growing plan for all fruits might be different
from the plan for all vegetables, or for all floral crops. A standard fruit-growing
plan is therefore a kind of growing plan that encapsulates specialized behavior,
such as the knowledge of when to harvest the fruit. We can assert this “kind of”
relationship among abstractions in C++ as follows:

class StardardFruitGrowingPlan : public GrowingPlan {

pablic:
StardardFruitGrowingPlan () ;

This class declaration means that the class StandardFruitGrowingPlan is just
like its superclass, GrowingPlan, except that objects of this specialized class
have an additional member object (t imeToHarvest), a different constructor and
destructor, and a new virtual member function (daysUntilHarvest). Using this
class, we could declare even more specialized subclasses, such as the class
StandardAppleGrowingPlan.

As we evolve our inheritance hierarchy, the structure and behavior that are
the same for different classes will tend to migrate to common superclasses. This
is why we often speak of inheritance as being a generalization/specialization
hierarchy; in some circles, inheritance is called the is a hierarchy. Superclasses
represent generalized abstractions, and subclasses represent specializations in
which fields and methods from the superclass are added, modified, or even
hidden. In this manner, inheritance lets us state our abstractions with an econ-
omy of expression. Indeed, neglecting the “kind of” hierarchies that exist can
lead to bloated, inelegant designs. As Cox points out, “Without inheritance,
every class would be a free-standing unit, each developed from the ground up.
Different classes would bear no relationship with one another, since the devel-
oper of each provides methods in whatever manner he chooses. Any consis-
tency across classes is the result of discipline on the part of the programmers.
Inheritance makes it possible to define new software in the same way we intro-
duce any concept to a newcomer, by comparing it with something that is al-
ready familiar” (61].

A i e
s s L CALEEL L B

K
-
2%
Ry

&

The Object Model

There is a healthy tension among the principles of abstraction, encapsula-
tion, and hierarchy. As Danforth and Tomlinson point out, “Data abstraction
attempts to provide an opaque barrier behind which methods and state are
hidden; inheritance requires opening this interface to some extent and may
allow state as well as methods to be accessed without abstraction” [62]. For a
given class, there are usually two kinds of clients: objects that invoke operations
upon instances of the class, and subclasses that inherit from the class. Liskov
therefore notes that, with inheritance, encapsulation can be violated in one of
three ways: “The subclass might access an instance variable of its superclass,
call a private operation of its superclass, or refer directly to superclasses of its
superclass” [63]. Different programming languages trade off support for
encapsulation and inheritance in different ways, but among the languages used
in this book, C++ offers the greatest flexibility. Specifically, the interface of a
class may have three parts: private parts, which declare members that are visible
only to the class itself, protected parts, which declare members that are visible
only to the class and its subclasses, and public parts, which are visible to all
clients.

Examples of Hierarchy: Multiple Inheritance. The previous example illustrated
the use of single inheritance: the subclass standardFruitGrowingPlan had
exactly one superclass, the class GrowingPlan. For some abstractions, it is useful
to provide inheritance from multiple superclasses. For example, suppose that
we choose to define a class representing a kind of plant. In CLOS, we might
declare this class as follows:

(defclass plart ()

((nare :initarg :nave
creader plant-name)
{date~planted rinitarg :date-planted

ireader date-planted)
(ermiration-time :initarg :germination-time

ireader germination-time)
(actual-germination :initform nil

saccessor actual-germinaticon))
(:docurentation "The base class of all plants."))}

According to this class definition, each instance of the class plant will have four
slots (name, date-planted, germination-time, and actual-germination).
Methods for initializing each slot are provided (the :initarg and iinitform slot
options), as well as methods for reading the first three slots (the :reader slot
option), and reading and writing the fourth slot (the :accessor slot option).

Our analysis of the problem domain might suggest that flowering plants and
fruits and vegetables have specialized properties. For example, given a flower-
ing plant, its expected time to flower and time to seed might be important to us.
Similarly, the time to harvest might be an important part of our abstraction of all
fruits and vegetables. One way we could capture our design decisions would be
to make two new classes, a flowering-plant class and a fruit/vegetable-
plant class, both subclasses of the class plant. However, what if we need to

Concepts

model a plant that both flowered and produced fruit? For example, florists
commonly use blossoms from apple, cherry, and plum trees. For this model, we
would need to invent a third class, a flowering/fruit/vegetable-plant, that
duplicated information from the flowering-plant and fruit/ vegetable-
plant classes.

A better way to express our abstractions and thereby avoid this redundancy
is to use multiple inheritance. First, we would invent classes that independently
capture the properties unique to flowering plants and fruits and vegetables:

(cefclass floweringplart-mixin ()
{{time—to-flower :initarg :time-to~flower
ireader time-to-flower)
(time—toseed :initarg :time-to—seed
‘reader time-to-seed))
{(:docurentation "A mixin class for flowering plants.™))

(defclass fruit/vegetableplant-mixin ()
{({time—to-harvest :initarg :time-to-harvest
ireader time-to-harvest))
(rdocumentation "A mixin class for fruits and vegetables.,"))

Notice that these two classes have no superclass; they stand alone. These are
called mixin classes, because they are meant to be mixed together with other
classes to produce new subclasses. For example, we can define a
flowering-plant class as follows:

(defclass flowering-plant (plant flowering-plant-mixin)

0
(:docurentation "A flowering plant class.™)

Similarly, a fruit/vegetable-plant class can be declared as follows:

(defclass fruit/vegetable—plant (plant fruit/vegetable-plant-mixin)
0
(:docurentation "A fruit or vegetable plant."))

In both cases, we form the subclass by inheriting from two superclasses.
Instances of the subclass flowering-plant thus include the slot
germination-time (inherited from the class plant) as well as the slot
time-to-flower (inherited from the class flowering-plant-mixin). Now,
suppose we want to declare a class for a plant that has both flowers and fruit.
We might write the following:

(defclass flowering/fruit/vegetable—plant (plant
flowering-plart-mixin
fruit/vegetableplant-mixin)

0
(:docurentation "A flowering fruit or vegetable plant."))

Examples of Hierarchy: Aggregation. Whereas these “kind of’ hierarchies denote
generalization/specialization relationships, “part of” hierarchies describe aggre-

Gl e

o ing
T

5 s e e

5
8
:

The Object Model

gation relationships. For example, a flowering plant object is built up of six
subobjects (the four slots defined in the class plant, and the two slots defined
in the class flowering-plant-mixin). When dealing with hierarchies such as
these, we often speak of levels of abstraction, a concept first described by
Dijkstra {64]. In terms of its “kind of” hierarchy, a high-level abstraction is gen-
eralized, and a low-level abstraction is specialized. Therefore, we say that a
plant class is at a higher level of abstraction then a flowering-plant class. In
terms of its “part of” hierarchy, a class is at a higher level of abstraction than
any of the classes that make up its implementation. Thus, the class
StandardFruitGrowingPlan is at a higher level of abstraction than the type day,
upon which it builds.

Typing

The Meaning of Typing. The concept of a #ype derives primarily from the theo-
ries of abstract data types. As Deutsch suggests, “A type is a precise characteri-
zation of structural or behavioral properties which a collection of entities all
share” [65]. For our purposes, we will use the terms type and class interchange-
ably.” Although the concepts of a type and a class are similar, we include typing
as a separate element of the object model because the concept of a type places
2 very different emphasis upon the meaning of abstraction. Specifically, we state
the following:

Typing is the enforcement of the class of an object, such that objects of dif-
Jferent types may not be interchanged, or at the most, they may be inter-
changed only in very restricted ways.

Typing lets us express our abstractions so that the programming language in
which we implement them can be made to enforce design decisions. Wegner
observes that this kind of enforcement is essential for programming-in-the-large
[67]. We consider it a minor element, however, because a given programming
language may be strongly typed, weakly typed, or even untyped, yet still be
called object-based or object-oriented.

"A type and a class are not exactly the same thing; some languages actually distinguish
these two concepts. For example, early versions of the language Trellis/Owl permitted an
object to have both a class and a type. Even in Smalltalk, objects of the classes
Smalllnteger, LargeNegativelInteger, and LargePositiveInteger are all of the
same type, Integer, although not of the same class [66). For most mortals, however,
separating the concepts of type and class is utterly confusing and adds very little value. It
is sufficient to say that a class implements a type.

Concepts

Strong typing prevents mixing abstractions.

Examples of Typing: Strong and Weak Typing. Returning to the user interface
segment of the hydroponics gardening system, suppose that we have the fol-
lowing (incomplete) classes written in Object Pascal:

TShape = dbject (TCbject)
fPosition : Point;
procedure TShape.Draw (Area : Rect);
function TShape.IsVisible : Boolean;
end;
Tlext = dbject (IShape)
fValue : 3tr25d5;
procechire TText.Draw (Area : Rect); override;
end;
TGreenhcuse = cbhject (TShape)
fHydroponics Tanks : array(l .. 10] of THydroponicsTank:

procediure TGresnhouse. Initialize;

4
A

The Object Mods!
procedure TGreenhouse.Draw (Area : Rect); override;

end;

In Object Pascal, all fields and methods declared in the interface of a class are
public. The implementation of such classes is therefore visible, which is why we
say that Object Pascal does not allow us to fully encapsulate our abstractions.

The class Tshape inherits from the base class Tobject and serves as the
superclass of any object that can be drawn on a workstation screen. TText and
TGreenhouse are both subclasses of this class, and represent more specialized
objects that can be drawn. TShape thus declares the common method draw, so
that all drawable objects have this behavior; the subclasses TTexrt and
TGreenhouse specialize this method to draw text and an iconic representation of
a greenhouse, respectively.

Since Object Pascal is a strongly typed language, we must explicitly assert
the type of each variable, subprogram parameter, and class field when we de-
clare it. For example, suppose that we have the following declarations:

An(hiect : Thiject;
AShare : TShepe;
ATextString : TText;
Asreennouse ¢ TGreenhouse;

We might then create new objects with the following statements:

rew (Anbiject);

new (AShape) ;
new (ATextString);
=W (AGreenhause) ;

Variables such as ATextString are not objects. To be precise, ATextString is
simply 2 name we use to designate an object of the class TText: when we say
“the object ATextString,” we really mean the instance of TText denoted by the
variable ATextString. We will explain this subtlety again in the next chapter.

Because Object Pascal is strongly typed, statements that invoke methods are
checked for type correctness at the time of compilation. For example, the fol-
lowing statements are legal:

AShape .Draw {SareArea) ; {Draw is defined for the class TShape}
ATextString.Draw(Sarefrea); {(Draw is defined for the class TText)

However, the following statements are not legal and would be rejected at
compilation time:

Anbiect,Draw (Somefrea) ; {Illegal})
ATextString. Initialize; {Illegal}

Neither of these two statements is legal because the methods Draw and
Initialize are not defined for the class of the corresponding variable, nor for
any superclasses of its class. On the other hand, the following statement is legal:

Concepts

1f AGreenhouse, IsVisible then

Although Isvisible is not defined in the class TGreenhouse, it is defined in the

class Tshape, from which the class TGreenhouse inherits its structure and

behavior. 3
Consider this same example in Smalltalk, an untyped language. Variables

are untyped, as in the following local declaration:

lantbject ashape ATextString aGreenhouse|
A statement such as
anCbject draw: Sarehrea.

would be accepted at compilation time, but its exact meaning could not be
known until execution time. If the variable anobject happened to denote an
object of the class shape (whose class had knowledge of the method draw),
then execution would proceed normally. On the other hand, if anCbiject de-
noted an instance of the predefined Smalltalk class Bag (which has no knowl-
edge of the method draw), then evaluating this statement would ultimately lead
to a “message not understood” error at runtime.

A strongly typed language is one in which all expressions are guaranteed to

S 2 T

be type-consistent. The meaning of type consistency is best illustrated by the |
following example, using the previously declared Object Pascal variables. The ' §
following assignment statements are legal: L

Anbject = AnChiject;
AShape := ATextString;

The first statement is legal because the class of the variable on the left side of
the statement (TObject) is the same as the class of the expression on the right B
side. The second statement is also legal because the class of the variable on the B
left side (TShape) is a superclass of the variable on the right side (TText).

Consider the following statements: E

AGreerhouse := AShape; {Illecml} | &
ATextString := AGreerhouse; {Illegal} e

Neither of these statements is legal because the class of the variable on the left
side of the assignment statement is a subclass of the class of the expression on
the right. f

In some situations, it is necessary to convert a value from one type to an-
other. For example, given the predefined class TList from a class library for
Object Pascal, we have the operation Each, which allows us to visit every ele- ki
ment in the list: f:

procedure TList.Each (procecure DoToltem (Item : TChiect));

The Object Mode!

If we know that our list object will always contain objects of the class
TGreenhouse, then we may explicitly coerce the value of one type to another, as
in the following legal assignment statement:

procedure DoToItem (Item : Tlhiect);
begin

AGreenhouse = Tareenhouse (Ttam) ;

erd;

This assignment statement is type-consistent, although it is not completely
type-safe. For example, if the list happened to contain an object of the class
TText at runtime, then the coercion would fail with an execution error.

As Tesler points out, there are a number of important benefits to be derived
from using strongly typed languages:

* “Without type checking, a program in most languages can ‘crash’ in
mysterious ways at runtime.,

* In most systems, the edit-compile-debug cycle is so tedious that early
error detection is indispensable.

* Type declarations help to document programs.

* Most compilers can generate more efficient object code if types are
declared” [68].

Untyped languages offer greater flexibility, but even with untyped languages, as
Borning and Ingalls observe, “In almost all cases, the programmer in fact knows
what sorts of objects are expected as the arguments of a message, and what sort
of object will be returned” {69]. In practice, the safety offered by strongly typed
languages usually more then compensates for the flexibility lost by not using an
untyped language, especially for programming-in-the-large.

Examples of Typing: Static and Dynamic Binding. The concepts of strong typing
and static typing are entirely different. Strong typing refers to type consistency,
whereas static typing — also known as static binding or early binding — refers to
the time when names are bound to types. Static binding means that the types of
all variables and expressions are fixed at the time of compilation; dynamic
binding (also called late binding) means that the types of all variables and
expressions are not known until runtime. Because strong typing and binding are
independent concepts, a language may be both strongly and statically typed
(Ada), strongly typed yet support dynamic binding (Object Pascal and C++), or
untyped yet support dynamic binding (Smalltalk). CLOS fits somewhere
between C++ and Smalltalk, in that an implementation may either enforce or
ignore any type declarations asserted by a programmer.

Concepts

Let’s again illustrate these concepts with an example from Object Pascal.
Earlier, we used the class TList, which is found in a class library for Object
Pascal, and represents a singly linked list. Its Chighly elided) declaration follows:

TList = cbiect (Tcbject)

procecre TList.InsertFirst (Ttem @ Tdodect):
procedure TList.Each (procedure DoToltem (Item : Tlbject));

end;

Here we see two methods: the first for adding items to the list (a modifier), and
the second for visiting every item in the list (an iterator). Because Object Pascal
supports dynamic binding, we may have either homogeneous lists, in which all
elements are of the same class, or heterogeneous lists whose elements are all of
different classes, as long as each item is an instance of the class Tobject or any
of its subclasses.

Assume that we have an object of the class TList named AList, represent-
ing a heterogeneous list of objects that are all of the class TShape or its sub-
classes. We can thus write statements such as the following:

Alist.InsertFirst (AShape);
Alist.InsertFirst (ATextString) ;
Alist . InsertFirst (AGreenhouse) ;

All of these statements are type-consistent because the type of each actual
parameter is of the same class (or subclass) as the corresponding formal param-
eter (TObject).

Suppose now that we want to draw each object in the list. We might write
the following procedure and statement:

procedure Draw Item (Item : TChject);

begin
TShape (Itam) .Draw {Sarefrea) ;

end;
Alist.Each(Draw Item);

The call to the operation Each invokes the list iterator, which in turn calls the
procedure Draw_Item for each object in the list. Notice that in the procedure
Draw_Item, we have to coerce the variable Item to the class TShape so that we
can invoke the operation Draw, which we defined for the class Tshape and its
subclasses. At the time of compilation, however, we cannot know the exact
subclass of the object designated by the formal parameter Item: it might be of
the class TText or TGreenhouse, for instance. This is an example of dynamic
binding.

Fortunately, because we can control what goes into the list, it is safe for us
to coerce the formal parameter Item to an object of the class TShape. Because
the method Draw is defined in the class TShape, it is type-consistent to invoke
this method. Thus, the effect of invoking the iterator Each is to walk down the

The Object Mode/

list and invoke the praw method of each object we find along the way. Because
each object may be of a different class, each object may respond differently to
the invocation of the Draw method. Ultimately, this means that we cannot know
until runtime what Draw method is actually called. This feature is called poly-
morphism; it represents a concept in type theory in which a single name (such
as a variable declaration) may denote objects of many different classes that are
related by some common superclass. Any object denoted by this name is there-
fore able to respond to some common set of operations [70]. The opposite of
polymorphism is monomorpbism, which is found in all languages that are both
strongly typed and statically bound, such as Ada.

Polymorphism exists when the features of inheritance and dynamic binding
interact. It is perhaps the most powerful feature of object-oriented programming
languages next to their support for abstraction, and it is what distinguishes
object-oriented programming from more traditional programming with abstract
data types. As we will see in the following chapters, polymorphism is also an
important concept in object-oriented design.

Concurrency

The Meaning of Concurrency. For certain kinds of problems, an automated sys-
tem may have to handle many different events simultaneously. Other problems
may involve so much computation that they exceed the capacity of any single
processor. In each of these cases, it is natural to consider using a distributed set
of computers for the target implementation or to use processors capable of
multitasking. A single process — also known as a thread of control — is the root
from which independent dynamic action occurs within a system. Every program
has at least one thread of control, but a system involving concurrency may have
many such threads: some that are transitory, and others that last the entire life-
time of the system’'s execution. Systems executing across multiple CPUs allow
for truly concurrent threads of control, whereas systems running on a single
CPU can only achieve the illusion of concurrent threads of control, usually by
means of some time-slicing algorithm.

Lim and Johnson point out that “designing features for concurrency in OOP
languages is not much different from [doing so in] other kinds of languages —
concurrency is orthogonal to OOP at the lowest levels of abstraction. OOP or
not, all the traditional problems in concurrent programming still remain” [71].
Indeed, building a large piece of software is hard enough; designing one that
encompasses multiple threads of control is much harder because one must
worry about such issues as deadlock, livelock, starvation, mutual exclusion, and
race conditions. Fortunately, as Lim and Johnson also point out, “At the highest
levels of abstraction, OOP can alleviate the concurrency problem for the major-
ity of programmers by hiding the concurrency inside reusable abstractions” {72].
Black et al. therefore suggest that “an object model is appropriate for a

Coricepts

ArilIfEe

——

O S VI TIITHP
&" e N SYTTIP 1
.J|{I¢;'I\:'l."{5'{ﬂl_l_ [!‘{ !
l','yé ; :-
A B Y

Concurrency allows different objects to act at the same time.

distributed system because it implicitly defines (1) the units of distribution and
movement and (2) the entities that communicate” {73].

Whereas object-oriented programming focuses upon data abstraction, en-
capsulation, and inheritance, concurrency focuses upon process abstraction and
synchronization {74]. The object is a concept that unifies these two different
viewpoints: each object (drawn from an abstraction of the real world) may rep-
resent a separate thread of control (a process abstraction). Such objects are
called active. In a system based on an object-oriented design, we can concep-
tualize the world as consisting of a set of cooperative objects, some of which
are active and thus serve as centers of independent activity, Given this concep-
tion, we define concurrency as follows:

Concurrency is the property that distinguishes an active object from one
that is not active.

Examples of Concurrency. Our discussion of abstraction introduced an Ada
package specification for a sequential class representing air temperature sensors.
Our variation of this package captured the design of an active sensor class,
whose behavior was to periodically determine the current temperature and then
send a message to another object whenever the temperature changed a certain
number of degrees. Ada’s mechanism for expressing a concurrent process is the
task, and therefore, we might complete this representation of the type

The Object Mode!

Air Temperature Sensor as follows (ignoring the need for the calibration
operation):

task type Alr Temperature Senscr is
ertry Initialize (Its Location : in Leocation;
Lower Alam Limit @ in Terperature;
Uper Alamm Limit @ in Temperature);
end Air Tenperature Sensor;

For every instance of this task type, we generate a new process. From an
object-oriented perspective, there is exactly one operation that we can perform
upon objects of this type. Specifically, we can initialize it, by telling the object
its location and its upper and lower temperature limits, outside of which other
objects are notified (via the generic formal subprogram parameter,
Temperature Alarm).

Suppose that each physical sensor uses memory-mapped I/O. To read the
value of a particular sensor, we need only reference some location in memory.
In Ada, we might express these design decisions by hiding the following decla-
rations in the body of the package Air Temperature_Sensors:

type Word is rarmge —(2**15 -1) .. (2**15 - 1);
for Word’ Size use 16;

Sensor Mamory Mep @ array (Location) of Word;
for Sensor Memory Mep use at 16#377FFO#;

Time Interval : constant Duration := 2.0;

These declarations are hidden because they are part of the secrets of this ab-
straction, such as the fact that the memory map starts at hexidecimal location
377FF0 and that each raw sensor value is a 10-bit number. The constant
Time Interval represents how often we want to read the physical sensor (in
this case, once every two seconds).

The basic idea of the sensor task is to read the memory map every
Time Interval seconds and then report to other objects any changes or alarm
conditions. Ignoring the issues of calibration and termination, we might imple-
ment the body of this task type as follows:

task pody Air Temperature Senscr is
Current location : Location;
Sensor Value : Word;
Current Temperature : Temperature;
Previcus Temperature : Temperature := Temperature'last;

Lower Limit : Tarperature;

Upper Limit : Tamperature;

Next Time : Calendar.Time := Calendar.Clock;
begin

acoept Initiatize (Its Location + in Location;

Lower Alarm Limit : in Temperature;
Upper Alarm Limit : in Tenperature) do
Current Iocation := Its Locaticn;

Concepts

Lower Limit := Lower Alarm Limit;
Uper Limit := Upper Alarm Limit;
end Initialize;
loop
delay (Next Time - Calerdar.Clock);
Sensor Value:= Sensor Memory Mep (Current Location);
Current Tarperature := Temperature (Float (Sensor Value) * Terperature'Delta);
if {Current Temperature /= Previous Temperature) then
if (Current Temperature < Lower Limit) or
(Qurrent Temperature > Upper Limit) then
Temperature Alarm(Current Iocaticon, Qurrent Temperature))
else
Previcus Tenperature := Qurrent Temperature;
Temperature Has Changed(Current Iocation, Current Temperature);
end if;
erd if;
Next_Time := Next Tire + Time Interval;
and loop;
end;

For clarity, this implementation has several more local variables than one would
probably use in production code.

Once the active object is initialized, its process loops every two seconds,
during which time the physical sensor value is read. If this value is different
than the previous reading, the algorithm continues. If this new reading also
exceeds the upper or lower temperatures established upon initialization, then
the procedure Temperature Alarm is called. Otherwise, the procedure
Temperature Has_ Changed is called, to notify some other object of the change.

One of the realities about concurrency is that once you introduce it into a
system, you must consider how active objects synchronize their activities with
one another as well as with objects that are purely sequential. For example, if
two active objects try to send messages to a third object, we must be certain to
use some means of mutual exclusion, so that the state of the object being acted
upon is not corrupted when both active objects try to update its state simulta-
neously. This is the point where the ideas of abstraction, encapsulation, and
concurrency interact. In the presence of concurrency, it is not enough simply to
define the methods of an object; we must also make certain that the semantics
of these methods are preserved in the presence of multiple threads of control.

There are a number of experimental concurrent object-oriented program-
ming languages, such as Actors, Orient 84/K, and ABCL/1, that provide mecha-
nisms for active objects and synchronization. The appendix provides references
to these and other languages. Among the languages used in this book, only
Smalltalk and Ada directly support multitasking (Smalltalk has the class Process
and Ada incorporates the concept of a task type). Concurrent objects in C++ are
possible through the use of the Unix system call fork. Object Pascal and CLOS
are typically used for sequential applications only; they do not have primitives
for concurrency.

The Object Mods!

S Ve
e
S T

T N
,“/ /l// /'5 \\\N ~
A) A
) ' }l . } f
k
S
s = V
m—
- e T
eV

Persistence saves the state and class of an object across time or space.

Persistence

An object in software takes up some amount of space and exists for a particular
amount of time. Atkinson et al. suggest that there is a continuum of object exis-
tence, ranging from transitory objects that arise within the evaluation of an
expression, to objects in a database that outlive the execution of a single pro-
gram. This spectrum of object persistence encompasses the following:

“Transient results in expression evaluation

Local variables in procedure activations

Own variables [as in ALGOL 60], global variables, and heap items
whose extent is different from their scope

Data that exists between executions of a program

Data that exists between various versions of a program

« Data that outlives the program” [75]

Traditional programming languages usually address only the first three kinds of
object persistence; persistence of the last three kinds is typically the domain of
database technology. This leads to a clash of cultures that sometimes results in
very strange designs: programmers end up crafting ad boc schemes for storing
objects whose state must be preserved between program executions, and
database designers misapply their technology to cope with transient objects [761.

Concepts

Unifying the concepts of concurrency and obijects gives rise to concurrent
object-oriented programming languages. In a similar fashion, introducing the
concept of persistence to the object model gives rise to object-oriented
databases. In practice, such databases build upon proven technology, such as
sequential, indexed, hierarchical, network, or relational database models, but
then offer to the programmer the abstraction of an object-oriented interface,
through which database queries and other operations are completed in terms of
objects whose lifetime transcends the lifetime of an individual program. This
unification vastly simplifies the development of certain kinds of applications. In
particular, it allows us to apply the same design methods to the database and
nondatabase segments of an application.

There are only a handful of object-oriented databases, such as TAXIS, SDM,
DAPLEX, and GEM [77]. None of the five languages we use in the applications
support persistence directly, so we have no examples to offer here. As we will
see in Chapters 9 and 10, however, it is possible to achieve the illusion of per-
sistence in these languages.

Persistence deals with more than just the lifetime of data. In object-oriented
databases, not only does the state of an object persist, but its c/ass must also
transcend any individual program so that every program interprets this saved
state in the same way. This clearly makes it challenging to maintain the integrity
of a database as it grows, particularly if we must change the class of an object.

Our discussion thus far pertains to persistence in time. In most systems, an
object, once created, consumes the same physical memory until it ceases to
exist. However, for systems that execute upon a distributed set of processors,
we must sometimes be concerned with persistence across space. In such sys-
tems, it is useful to think of objects that can move from machine to machine,
and that may even have different representations on different machines. We
examine this kind of persistence further in the application in Chapter 12.

To summarize, we define persistence as follows:

Persistence is the property of an object through which its existence tran-
scends time (i.e. the object continues to exist after its creator ceases 1o exist)
and/or space (i.e. the object’s location moves from the address space in
which it was created).

2.3 Applying the Object Model

Benefits of the Object Model

As we have shown, the object model is fundamentally different than the models
embraced by the more traditional methods of structured analysis, structured
design, and structured programming. This does not mean that the object model
abandons all of the sound principles and experiences of these older methods.
Rather, it introduces several novel elements that build upon these earlier mod-
els. Thus, the object model offers a number of significant benefits that other

The Object Model

models simply do not provide. Most importantly, the use of the object model
leads us to construct systems that embody the five attributes of well-structured
complex systems. In our experience, there are five other practical benefits to be
derived from the application of the object model.

First, the use of the object model helps us to exploit the expressive power
of all object-based and object-oriented programming languages. As Stroustrup
points out, “It is not always clear how best to take advantage of a language
such as C++. Significant improvements in productivity and code quality have
consistently been achieved using C++ as ‘a better C' with a bit of data abstrac-
tion thrown in where it is clearly useful. However, further and noticeably larger
improvements have been achieved by taking advantage of class hierarchies in
the design process. This is often called object-oriented design and this is where
the greatest benefits of using C++ have been found” [78]. Our experience has
been that, without the application of the elements of the object model, the more
powerful features of languages such as Smalltalk, Object Pascal, C++, CLOS, and
Ada are either ignored or greatly misused.

Next, the use of the object model encourages the reuse not only of software
but of entire designs {79]. We have found that object-oriented systems are often
smaller than equivalent non-object-oriented implementations. Not only does this
mean less code to write and maintain, but greater reuse of software also trans-
lates into cost and schedule benefits.

Third, the use of the object model produces systems that are built upon
stable intermediate forms, and thus are more resilient to change. This also
means that such systems can be allowed to evolve over time, rather than be
abandoned or completely redesigned in response to the first major change in
requirements.

Chapter 7 explains further how the object model reduces the risk of devel-
oping complex systems, primarily because integration is spread out across the
life cycle rather than occurring as one big bang event. The object model’s guid-
ance in designing an intelligent separation of concerns also reduces develop-
ment risk and increases our confidence in the correctness of our design.

Finally, the object model appeals to the workings of human cognition, for
as Robson suggests, “Many people who have no idea how a computer works
find the idea of object-oriented systems quite natural” (80].

Applications of the Object Model

The object model has proven applicable to a wide variety of problem domains.
Figure 2-6 lists many of the domains for which systems exist that may properly
be called object-oriented. The Bibliography provides an extensive list of refer-
ences to these and other applications.

Object-oriented design may be the only method we have today that can be
employed to attack the complexity inherent in very large systems. In all fairness,
however, the use of object-oriented design may be ill-advised for some do-
mains, not for any technical reasons, but for nontechnical ones, such as the
absence of a suitably trained staff or good development environment.

Concepts

Air traffic control

Animation

Avionics

Banking and insurance software
Business data processin
Chemical process contro
Command and control systems
Computer aided design
Computer aided education
Computer integrated manufacturing
Databases

Document preparation

Expert systems

Film and stage storyboarding
Hypermedia

fmage recognition

Figure 2-6
Applications of the Object Model

Open Issues

Investment strategies
Mathematical analysis

Medical electronics

Music composition

Office automation

Operating systems

Petroleum engineering

Reusable software components
Robotics

Software development environments
Space station software
Spacecraft and aircraft simulation
Telecommunications

Telemetry systems

User interface design

VLSI design

To effectively apply the elements of the object model, we must next address

several open issues:

+ What exactly are classes and objects?

* How does one properly identify the classes and objects that are rele-

vant to a particular application?

* What is a suitable notation for expressing the design of an object-

oriented system?

* What process can lead us to a well-structured object-oriented system?

design?

What are the management implications of using object-oriented

These issues are the themes of the next five chapters.

Summary

+ The maturation of software engineering has led to the development of
object-oriented analysis, design, and programming methods, all of which
address the issues of programming-in-the-large.

* There are several different programming paradigms: procedure-oriented,
object-oriented, logic-oriented, rule-oriented, and constraint-oriented.

The Object Model

. The object model provides the conceptual framework for object-oriented
methods; the object model encompasses the principles of abstraction,
encapsulation, modularity, hierarchy, typing, concurrency, and persistence.

« An abstraction denotes the essential characteristics of an object that distin-
guish it from all other kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer.

- Encapsulation is the process of hiding all of the details of an object that do
not contribute to its essential characteristics.

« Modularity is the property of a system that has been decomposed into a set
of cohesive and loosely coupled modules.

« Hierarchy is a ranking or ordering of abstractions.

+ Typing is the enforcement of the class of an object, such that objects of
different types may not be interchanged, or at the most, they may be inter-
changed only in very restricted ways.

. Concurrency is the property that distinguishes an active object from one
that is not active.

. Persistence is the property of an object through which its existence tran-
scends time and/or space.

« The application of the object model leads to systems that embody the five
attributes of well-structured complex systems.

Further Readings

The concept of the object model was first introduced by Jones [F 1979] and Williams
(F 1986]. Kay’s Ph.D. thesis [F 1969] established the direction for much of the work in
object-oriented programming that followed.

Shaw {J 1984] provides an excellent summary regarding abstraction mechanisms in high-
order programming languages. The theoretical foundation of abstraction may be
found in the work of Liskov and Guttag (H 1986, Guttag [J 1980}, and Hilfinger
[1982]. Parnas [F 1979] provides the seminal work on information hiding. The
meaning and importance of hierarchy are discussed in the work edited by Pattee
{J 19731

There is a wealth of literature regarding object-oriented programming. Cardelli and
Wegner [J 1985] and Wegner {J 1987] provide an excellent survey of object-based and
object-oriented programming languages. The tutorial papers of Stefik and Bobrow
(G 1986], Stroustrup [G 1988), and Nygaard [G 1986] are good starting points on the
important issues of object-oriented programming. The books by Cox [G 1986], Meyer
{F 1988}, Schmucker [G 1986}, and Kim and Lochovsky [F 1989] offer extended cover-
age of these topics.

Object-oriented design methods were first formalized by Booch [F 1981, 1982, 1986,
1987, 1989). Variations of this method include HOOD [F 19871, as used in the
European Space Station project, and GOOD, as introduced by Seidewitz and Stark
[F 1988}, Similar object-oriented design methods have been proposed by Wirfs-Brock
and Wilkerson [F 1989} (emphasizing a responsibility-driven approach), Constantine

Concepts

[F 1989], and Wasserman {F 1989). Related works include Ross [F 1987 on the topic of
entity modeling, and Abelson and Sussman [H 1985] on the general topic of pro-
gramming.

Object-oriented analysis methods were introduced by Shlaer and Mellor [B 1988] and
Bailin {B 1988], with later contributions by Coad and Yourdon [B 1990].

An excellent collection of papers dealing with all topics of object-oriented computing
may be found in Peterson [G 1987) and Schriver and Wegner [G 1987]. The proceed-
ings of several yearly conferences on object-oriented computing are also excellent
sources of material. Three of the more interesting forums include the USENIX C++
conferences, OOPSLA (Object-Oriented Programming Systems, Languages, and
Applications), and ECOOP (European Conference on Object-Oriented Programming).

