Chimera Commands Index

Usage:
apbsmolecule  atom-spec ]  options

Like the Chimera APBS tool, the apbs command runs APBS (Adaptive Poisson-Boltzmann Solver) electrostatics calculations. The process can use either a web service provided by the National Biomedical Computation Resource (NBCR) or a locally installed copy of the program. Users should cite:

Electrostatics of nanosystems: application to microtubules and the ribosome. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Proc Natl Acad Sci USA. 2001 Aug 28;98(18):10037-41.
A structure should be prepared for APBS calculations by reconstructing missing heavy atoms, adding hydrogens, and assigning atomic charges and radii. These tasks can be done with pdb2pqr alone or in combination with parts of Dock Prep. Atomic charges can be assigned with addcharge or pdb2pqr, although the latter may be preferred because it includes force fields developed specifically for Poisson-Boltzmann calculations. By default, any explicit solvent (typically water) will be omitted from the APBS calculation.

If more than one molecule model is present, the molecule option should be used to specify which to act upon. ** If charges were assigned with pdb2pqr, the model output by that step should be used, not the original model.**

Focusing will be performed automatically; that is, there will be an initial electrostatics calculation on a larger grid with relatively coarse divisions, followed by another calculation on a smaller grid with finer divisions, for which the boundary conditions are determined from the first run (APBS keyword mg-auto). Default grid sizes (see dime, cglen, and fglen below) are based on the dimensions of the input structure.

The resulting electrostatic potential map will be opened as a new model in Chimera and the Electrostatic Surface Coloring tool for coloring molecular surfaces by potential will appear. Alternatively, the map can be shown as isopotential surfaces; these are not displayed automatically, but can be shown by starting Volume Viewer and clicking the eye icon or by using the volume command.

See also: coulombic, scolor, DelPhiController

Options

Option keywords for apbs can be truncated to unique strings and their case does not matter. A vertical bar “|” designates mutually exclusive options, and default values are indicated with bold. Synonyms for true: True, 1. Synonyms for false: False, 0.

Several keywords are the same as for running APBS directly; see the documentation at the APBS site for further details on specific options.

molecule  atom-spec
Limit the calculation to the specified model (the molecule model containing the specified atoms). Only one model should be specified. If atom-spec includes any spaces, it must be enclosed in single or double quote marks. ** If charges were assigned with pdb2pqr, the model output by that step should be used, not the original model.**
solvent true | false
Whether to include any explicit solvent (typically water molecules) present in the input model.
output  file
Pathname (name and location) of the output electrostatic potential map (*.dx type). If not specified, a temporary name and location will be used.
dime  nx,ny,nz
Grid points per processor; dimensions in integer grid units along the molecule X, Y, and Z axes; commonly used values are 65, 97, 129, and 161.
cglen  xlen,ylen,zlen
Dimensions in Å of the coarse grid along the molecule X, Y, and Z axes; the coarse grid should completely enclose the biomolecule.
cgcent true | false
Whether to center the coarse grid on the molecule.
_cgcentcoord  xcent,ycent,zcent
If not centering on the molecule, coordinates of the center of the coarse grid in the molecule coordinate system.
fglen  xlen,ylen,zlen
Dimensions in Å of the fine grid along the molecule X, Y, and Z axes; the fine grid should enclose the region of interest in the molecule.
fgcent true | false
Whether to center the fine grid on the molecule.
_fgcentcoord  xcent,ycent,zcent
If not centering on the molecule, coordinates of the center of the fine grid in the molecule coordinate system.
bcfl  condition
How to initialize potential at the boundary of the coarse grid, where condition can be: Results from the coarse run are then used to initialize potential at the boundary of the fine grid.
pdie  dielectric1
Solute dielectric constant (default 2.0).
sdie  dielectric2
Solvent dielectric constant (default 78.54).
chgm  method
How to map atomic partial charges onto grid points, where method can be:
ion true | false
Whether to include mobile ions in the calculation.
_posion  charge,conc,radius
If including mobile ions, the positive ion charge in electron units (the value should be positive), molar concentration, and radius in Å. The total system of mobile ions must be electroneutral; for example, if the positive ion has twice the charge magnitude of the negative ion, its concentration should be half as high.
_negion  charge,conc,radius
If including mobile ions, the negative ion charge in electron units (the value should be negative), molar concentration, and radius in Å.
_equation  lpbe | npbe | smpbe
Which form of the Poisson-Boltzmann equation to use:
srfm  model
How to map dielectric values and ion accessibility, where model can be:
sdens  density
Density of points used to calculate a molecular surface for mapping values (default 10.0 points/Å2).
srad  radius
Solvent (probe) radius used to calculate a molecular surface for mapping values (default 1.4 Å).
temp  T
Temperature to use in the Poisson-Boltzmann equation (default 298.15 K).
backend  opal | local
Whether to use an Opal web service (default) or a locally installed executable.
location  opal-URL | local-path
Depending on the backend setting, the URL of the web service (default is the URL for the service provided by the NBCR) or the pathname of the local executable.
wait true | false
Whether to wait for the calculation to finish before starting to execute any subsequent commands.